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Most CEOs value marketing 
But most don’t trust their CMO

83% of CEOs believe 

marketing is key to 

driving growth

Only 20% of CEOs trust 

their CMO (90% trust 

their CFO)
Source: Harvard Business Review.  “Why CMOs Never Last,”, July-August 2017
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https://hbr.org/2017/07/why-cmos-never-last


ld-School marketing sometimes feels like …

Trust me.  I’ve 

been doing 

this for 20 

years…

Old-School marketing sometimes feels like …
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The Chicago-Booth Approach to Marketing
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Scientific approach to marketing decisions

What is your theory?

What is your evidence?

• Which data/method(s)?

Was it good for business (accountability/evaluation)?
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Where does AI fit into this Scientific Approach?

Ability of machine to perform tasks 

usually associated with human 

intelligence.

e.g., learning, reasoning, & making 

decisions

Currently we really only have Narrow AI which is effective at specific tasks.
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So what exactly is AI?

“It’s also a problem that “A.I.” has no fixed definition”

“As a computer scientist, I don’t like the term `A.I.’ In

fact, I think it’s misleading—maybe even a little 

dangerous.”

“…think of A.I. as a tool, not a creature”

Jaron Lanier
Tech Guru & Prime Unifying Scientist at 

Microsoft’s Office of the Chief Technology 

Officer

Need to set more realistic expectations for business uses
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Some definitions

Machine Learning: subfield of AI that uses algorithms to teach computers to learn 

and improve from data (especially deep learning using vast amounts of data to find patterns).

Large Language Models: type of AI using deep learning algorithms to 

understand, process and generate human language.  Trained on large amounts of text data

(e.g., books, articles, code …).

Generative AI: broader concept of AI systems that can generate new content, such 

as text, audio, video and 3D models. Uses ML trained on various data.  e.g., ChatGPT built on 

foundation of an LLM.

→STILL EXPERIMENTAL!
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Let’s look at some marketing applications to flesh these ideas out…
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Starts with data... and AI as the analyst
example: Price Optimization
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Pricing at Ziprecruiter.com

•Academic collaboration with Ziprecruiter.com

•Fastest growing HR company: 75,000 employers per month

•Online matching platform for recruiters and applicants

•High conversion rates and high quality matches

•August 2015: charging $99 per month to “starter” businesses

… but why $99?

Source: Dubé and Misra (2023)
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https://www.journals.uchicago.edu/doi/abs/10.1086/720793


Pricing at Ziprecruiter.com

•How do you evaluate the $99 price?

•How do you measure demand for a B2B digital service?

•method: 

We ran a B2B price experiment to measure demand and determine the 

optimal price at Ziprecruiter…

Source: Dubé and Misra (2023)
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https://www.journals.uchicago.edu/doi/abs/10.1086/720793


The Ziprecruiter Price Experiment
Method

10 prices tested:

$19, $39, $59, $79, $𝟗𝟗, $159, $199, $249, $299, $399

All new customers in September 2015

▪ Customer had to register and advance to paywall

▪ Each customer assigned randomly to a price

▪ Track whether customer submitted credit card information and was billed for 

a month of service
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Source: Dubé and Misra (2023)

https://www.journals.uchicago.edu/doi/epdf/10.1086/720793


The Ziprecruiter Price Experiment
Data

Source: Dubé and Misra (2023)

Can AI handle the analytics?
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https://www.journals.uchicago.edu/doi/epdf/10.1086/720793


The Ziprecruiter Price Experiment
Ask ChatGPT- 4o for help…
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Upload the data



The Ziprecruiter Price Experiment
Ask ChatGPT- 4o for help…
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(my prompt)

VERY WRONG!

• AI confused how to model demand

• human can easily reason this 

is incorrect but AI cannot reason!



Ok so we need to walk ChatGPT through the micro

1. help it figure out demand

2. set price using the “correct” demand
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The Ziprecruiter Price Experiment
Ask ChatGPT- 4o for help…



The Ziprecruiter Price Experiment
Ask ChatGPT- 4o for help…
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(my new prompt)
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(my new prompt)

The Ziprecruiter Price Experiment
Ask ChatGPT- 4o for help…

Demand!!!



The Ziprecruiter Price Experiment
Ask ChatGPT- 4o for help…
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(update the prompt)



20

The Ziprecruiter Price Experiment
Ask ChatGPT- 4o for help…
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The Ziprecruiter Price Experiment
Ask ChatGPT- 4o for help…



Oops … 

under-pricing by over 60% (leaving a lot of money on the table)

▪ Insight used basic prompt-based AI (Generative AI … i.e., LLM)

▪ But 

▪ required simple experiment to get the right data

▪ required manager to guide ChatGPT through the microeconomic modeling of demand

Opportunity for AI to generate additional monetization from these data?
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The Ziprecruiter Price Experiment
Conclusions using ChatGPT- 4o as the Analyst



Let’s sprinkle on more Machine Learning…
example: Price Optimization continued
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First revisit the underlying microeconomics



Optimal Uniform Price
Charge customers same price for same product

Conversion

Price

Variable

Profits

P*

Money left 

on table

Unserved customers
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100%

Demand
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Profits

Personalized Pricing
Suppose we could identify customers/segments

Conversion

Price
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100%

Profits

Incremental

Profits

From Targeting

P2*

P3*

P1*

PN*

⋮
P*
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Monetizing Customer Data

Customer data Ziprecruiter observes at registration stage
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Company/Job Variable Names

Job state

Company type

Has commissions

Company declared job slots needed

Job total benefits

Employment type

Resume required

Job medical benefit

Job vision benefit

Job life insurance benefit

Job category

Can Ziprecruiter monetize these 

data?



Thousands of potentially targetable features

▪ As many features as observations!

Apply Deep Learning Algorithm to our logistic 

demand

▪ Combine statistics and machine learning

▪ Link willingness-to-pay to features
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Scalable Personalized Pricing
Pricing as a Machine Learning problem
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Cap at $499 to prevent customer

backlash or “sticker shock”

Distribution of Personalized Prices (N= 7,867)

Scalable Personalized Pricing
Simulated Personalized Prices for August 2015 training sample

Source: Dubé and Misra (2023)

https://www.journals.uchicago.edu/doi/epdf/10.1086/720793


Scalable Personalized Pricing
Projected Revenues

Pricing Projected 

Profit Per 

Lead

Base ($99) $25

Uniform ($249) $40

Personalized $44
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Source: Dubé and Misra (2023)

https://www.journals.uchicago.edu/doi/epdf/10.1086/720793


Scalable Personalized Pricing
Validation

Nov 2015: Implement a 3 bin experiment

5,315 new “starter” firms

1. Control pricing – $99 (25%)

2. Uniform pricing – $249 (25%)

3. Personalized pricing (50%)

Run and evaluate.
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Source: Dubé and Misra (2023)

https://www.journals.uchicago.edu/doi/epdf/10.1086/720793


Scalable Personalized Pricing
Actual Profits in Second Experiment
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Pricing Projected 

Profit Per 

Lead

Realized 

Profit Per 

Lead

Base ($99) $25 $23

Uniform 

($249)

$40 $38

Personalized $44 $42

Source: Dubé and Misra (2023)

83% 

Rev 

65% 

Rev 

https://www.journals.uchicago.edu/doi/epdf/10.1086/720793


A Price Experiment at Ziprecruiter.com

ML squeezed more monetizable information out of the data

But again it (currently) requires a human to supply the microeconomic 

framework for the ML to be effective

12
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What about non-numeric content?
Example: An E-Mail Marketing Newsletter
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The Daily Wine Access Newsletter

• Over 27,000 subscribers

• 2 daily newsletters featuring novel wines

& expert reviews

• 3 professional writers 

(each costing $125,000 per year)
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Can a GPT capture the “voice” of the writer?
(“Generative Pre-trained Transformer”)

35



Training LLM to write a Wine Newsletter

In Dec 2023, ChatGPT off-the-shelf was terrible!

•Clichés, poor grammar and unprofessional language

•Hallucinations

•Opaque algorithm makes it difficult to decipher 

sources of errors
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Training LLM to write a Wine Newsletter
3-step training approach

Gather training data

o 5 years of writing team’s high-revenue newsletters

o same prompts as writers: wine attributes, expert reviews, scores, etc.

Create synthetic data using inputs from (1) & GPT-4

o Real-world data insufficient to train LLM

o So repeat (1) many times using synthetic outputs

Fine-tune the LLM with real & synthetic data

o uses algorithm Orca/Mistral
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Treatment Period: 2 weeks (01/15/24-01/28/24)

Cell Sizes

▪ No e-mail: 500

▪ Human: 9,000

▪ AI: 9,000

▪ Hybrid: 9,000

38

(e-mails written by AI)

(No e-mails sent)

(e-mails written by human writing team -- Control)

(e-mails written by AI but edited by other human writing team)

Prediction in early 2024 → hybrid cell would “win” because it would make writers more productive

Training LLM to write a Wine Newsletter
Experimental Design



Example of a Newsletter
January 15, 2024

Human A.I. Hybrid
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E-mail more than doubles purchase incidence E-mail more than doubles # bottles purchased

We fail to reject that AI is equivalent to Human

Training LLM to write a Wine Newsletter
Average outcome by cell
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E-mail almost doubles profits!!!

Again, we 

fail to reject

that AI is 

equivalent 

to Human

But must also consider avoidable fixed costs

Training LLM to write a Wine Newsletter
Average outcome by cell
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• Each writer costs 

$125,000 per year!

• AI allows reducing 

writing team by 3 

people

Aggregate Annual Projection

Control
Human 

Content
AI Content Hybrid

Profit $3,687,652 $7,504,844 $7,308,570 $7,111,912

Cost
$ 0

(No writers,

no AI license)

$375,000
(3 writers, 

no AI license)

$1,000
(AI license)

$126,000
(1 write + AI 

license)

Net Profit $3,687,652 $7,129,844 $7,307,570 $6,985,912

This is after one experiment & limited GPT training

Training LLM to write a Wine Newsletter
Average outcome by cell



Hybrid performed the worst!

New study by Caplin et al (2024) finds

“AI assistance is more valuable for people who are 

calibrated, meaning they have accurate beliefs 

about their own ability.”

Bennett (2024) finds literary community (writers) most 

critical of AI (legal fights over copyright)
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Training LLM to write a Wine Newsletter
Adjusting the Prediction



Treatment Period: 2 weeks (09/30/24-10/13/24)

Cell Sizes

▪ Human: 8,273

▪ AI: 8,274

▪ Hybrid: 8,273
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(e-mails written by AI)

(e-mails written by human writing team)

(e-mails written by AI but edited by Marketing Team)

Training LLM to write a Wine Newsletter
Follow-up Study Design
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• Each writer costs 

$125,000 per year!

• AI allows reducing 

writing team by 3 

people

Aggregate Incremental Annual Projection(relative to Human)

AI Content Hybrid

Incremental Gross Profit -$254,015 $46,424

Incremental Cost -$374,000
(AI license)

-$249,000
(1 write + AI license)

Incremental Net Profit $119,985 $295,424

This is after two experiments & limited GPT training

Training LLM to write a Wine Newsletter
Average outcome by cell



Revisit using a GTP with prompts

Claude worked the best
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Training LLM to write a Wine Newsletter
Updating the AI one year later



Treatment Period: 2 weeks (02/23/25-03/09/25)

Cell Sizes

▪ Human: 7,987

▪ AI: 7,988

▪ Hybrid: 7,988
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(e-mails written by AI (Claude)

(e-mails written by human writing team)

(e-mails written by AI but edited by Marketing Team)

Training LLM to write a Wine Newsletter
Follow-up Study Design
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• Each writer costs 

$125,000 per year!

• AI allows reducing 

writing team by 3 

people

Aggregate Incremental Annual Projection(relative to Human)

AI Content Hybrid

Incremental Gross Profit $278,314 $315,428

Incremental Cost -$374,500
(AI license)

-$248,500
(1 write + AI license)

Incremental Net Profit $651,814.3 $563,928

This is after two experiments & limited GPT training

Training LLM to write a Wine Newsletter
Average outcome by cell



A pre-trained LLM seems to produce promising e-mail copy

→ But needed historic e-mails (data) to train it properly

GenAI does even better (Claude)

- seems to produce better copy with prompts
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Training LLM to write a Wine Newsletter
Average outcome by cell



Conclusions

Marketing should not be a gut-instinct guessing game

AI creates many new marketing opportunities

But we still need theory & data (not just ML) to guide the analysis

We also (currently) still need a human to guide the AI

Marketing spending can be more accountable & drive growth!!!
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“Trust me, I’ve tested the AI 

application scientifically and 

ROMI is high!”



Thank you.
Jean-Pierre Dubé

James M. Kilts Distinguished Service Professor of Marketing
jdube@chicagobooth.edu 

University of Chicago Booth School of Business
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